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Simplest MEMS/NEMS

Mechanical element deforms under an electrostatic force

The deformation of the mechanical element can usually be reduced to one of these
types of deformation:

stretching
bending
torsion



Examples of MEMS and NEMS devices



What are they for?

Practical applications:

* force/acceleration/orientation sensing

* mass spectrometry on a chip —recognize atoms and molecules by weighing them

* replace quartz oscillators with MEMS/NEMS
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RF resonator

Si beams with lengths of cca 7um, height h=0.8 um and width w=0.33 um

Cleland et al., APL 69, 2653 (1996)



Fabrication sequence

1: Bare substrate

structural layer

sacrificial layer

2: Photoresist coating

zg;g;;e and patterning
2
3: Metal deposition
resist
4: Resist coating and
3 resist patterning (for etch)
metal 5: Etch of the structural

layer, resist removal

6: Etch of the sacrificial




RF resonator - motion detection

Magnetomotive technique is the earliest method used for motion excitation and
detection

Device carrying rf current is placed in a
magnetic field

The magnetic field induces rf Lorentz force
F=1¢{xB

Resulting displacement of the beam
generates an electromotive force (voltage)

This voltage is sensed, allowing the
displacement to be measured

Displacements are usually on the order of
resonator widths

Cleland et al., APL 69, 2653 (1996)



RF resonator - motion detection

Magnetomotive technique
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RF resonator - motion detection

From the electrical point of view, NEMS are modelled as a parallel RLC network
with total impedance Z,,,(w) composed of resistance R,,, capacitance C,,, and
inductance L,

RS
AA a
The NEMS is coupled to the outside ¥ ) %

world through a resistance R,. This
represents the resistance of the leads Va.(

s L"‘ éRm Cnn :
For NEMS made of doped Si, R,;, < 100 () ST
while R, is inthe low kQ range. Capacitive <
and inductive losses can be neglected in

first approximation:
Zm = Ry,

NEMS is driven by a voltage source

with an internal resistance R, and the ]
voltage is measured on the load R;. f NA |

RL=RS=SOQ Vin V

Ekinci etal., APL 81, 2253 (2002)



RF resonator - motion detection

In this case, the voltage on the load can be approximated as:

- R, + Zm(w) Ry
V@ ~Val) g T @1 WA= %

With the following numbers: Va.@ =g |
R, = 2 kQ,R,, = 100 Q % é==;

Z. =100 Q,R, = 50 kQ

we get
Vo(w) = Vi (w) X 0.98

Ekinci etal., APL 81, 2253 (2002)



RF resonator - motion detection

Sensitivity can be improved by using detection schemes that involve bridges
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Sensitive mass detection

SiC NEMS

filament and
shutter

quartz
microbalance

apertures

NEMS

Ekinci et al., APL 84, 4469 (2004) 11



Sensitive mass detection

Resonant frequency:
k
w? = —
m

Mass detection:

dm
2wdw = ——dm = —w* —
m m

‘dm dw
—l=2=
m W

Resolution: 2.5ag=2.5 X 108 g
cca 7500 Au atoms

Ekinci et al., APL 84, 4469 (2004)
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This is what you need to get 6 Tesla

Superconducting magnet in the Kis group

13



Torsional oscillators with CNTs

* |dea - look for a physical property that changes with deformation
= Carbon nanotube — based torsional oscillator

-]

=

Deflection Angle (Rad)
-
b

[t
™
‘.Q.»

N
“#\ " A

A

=]

=
T

0 10

10 5 5
Backgate Bias (V)

A. Hall, PhD thesis, Chappel Hill 2007
Papadakis et al., PRL 93, 146101 (2004) 14



Torsional oscillators with CNTs

= Carbon nanotube — based torsional oscillator

A. Hall, PhD thesis, Chappel Hill 2007
Papadakis et al., PRL 93, 146101 (2004)
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Torsional oscillators with CNTs
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Nanotube chirality
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Nanotube chirality

Kataura plot
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Torsional oscillators with CNTs

Carbon nanotube — based torsional oscillator

Hall et al., Nat Nano 2, 413 (2007)
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Torsional oscillators with CNTs

Carbon nanotube — based torsional oscillator
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Electrostatic actuation

= NEMS based on a carbon nanotube

* CNTis suspended above a back-gate
and is actuated electrostatically

* The energy stored in the capacitor with
CNT as one and back gate as the other
electrode is:

2
CoYg
2

E =

* The electrostatic force is the gradient
of the energy:

dE 11dC 11dC 2 1]dC
F,=——=—— —-9 2 _ _ |29 DC AC1” ~ _ Z g DC[ys DC 21 AC
el dz 2 dz]Vg Zldz][l{q * Vg ] 2| dz Vo [Vg T 2V ]

= where the gate voltage has both a static DC component and a small AC component

(V, = V,°¢ + v,4%;1,4¢ = 1,*“ cos(wt)) so that (U;C)z is negligibly small

Sazonova et al., Nature 431, 284 (2004) 21



Motion detection

“ The oscillating beam is a so-called
small bandgap semiconducting carbon
nanotube (E; = 10 meV)

“ The conductance change of such
semiconducting nanotubes is
proportional to the charge induced on
the tube:

5q_5(cgg)_cav+

“normal” gating

# 0 for a moving nanotube

22

Sazonova et al., Nature 431, 284 (2004)



Motion detection

= Mixing technique, allowing use of low-bandwidth lock-in amplifiers
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Tunability

= Static voltage on the gate can induce tension in the suspended nanotube

= Changing the tension in the nanotube results in a shifting resonance frequency
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Sensitive mass detection using nanotubes

gas mass loading 100-
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Sensitive mass detection using CNTs

Works at room temperature

|
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Jensen et al., Nature Nanotech. 3, 533 (2008)
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Sensitive mass detection using CNTs

Sweep generator
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Sensitive mass detection using CNTs
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Theoretical background: mechanics



Basic definitions (stress and strain)

Let us consider a bar like the one on figure

When we subject it to an axial force F, it
will elongate by an amount x

If the force acts at the center of the cross-section, the uniform stress o will be
given by:

F : :
o = — Where A is the beam's cross-sectional area

A
If the bar is made of a homogeneous material, the axial strain & will be:
X
£ =—
L

Hooke's law states that stress o is proportional to strain € (for small deformations):

o=Fe¢

or in a more familiar form which can be written as
E:gf N F=Eé-x F = kx (Hooke’s law)
A L



Hooke's law at the nanoscale

Still holds — example of carbon nanotubes

Stress (GPa)

0 2 4 6 8 10 12
Strain (%)

Yu et al., Science 287, 637 (2000)
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2D nanoribons @ LANES

300nm EHT = 1.50 kV Signal A = SE2 Date :14 Oct 2009 EPFL-CMI

Mag = 38.68 KX H WD= 6mm StageatT= 22.9 °FileName=Gr_9_19_3_ribbons_T_ti2_D2_8 tif
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Types of mechanical response

Materials can be classified according to the way they respond to stress as:
* elastic - strain is uniquely determined by the stress
* anelastic — stress has multiple values and hysteretic behavior

A A
= B
S 5|/
” _//‘ - /
> >
Stress Stress
Stress-strain curve for an elastic material anelastic material

Typical examples of anelastic materials: glass, rubber

Their mechanical response is also time-dependent — the size of the hysteresis loop
depends on the rate of strain

Elastic materials fully recover their original shape and size when the strain is
released

Better choice for NEMS/MEMS: elastic



Types of mechanical response

Elastic materials are further classified as elastic linear and elastic nonlinear,
depending on whether the stress and strain are proportional to one another

Another classification: ductile vs. brittle

Ductile materials are elastic for small strains but can be deformed permanently
with sufficiently high strain — typical examples are metals

A

Strain

/
-7

T

L -
Stress

Stress-strain curve for a ductile material

Brittle materials have a linear elastic response up to the breaking point
Examples: usually covalently bonded materials such as Si, Ge, diamond

Better choice for MEMS/NEMS: brittle



Basic definitions (stress and strain)

Let us consider a bar like the one on figure

When we subject it to an axial force F it
will elongate by an amount x

If the force acts at the center of the cross-section, the uniform stress ¢ will be
given by:

F
o= Z where A is the beam's cross-sectional area

If the bar is made of a homogeneous material, the axial strain will be:

€=Z

Hooke's law states that stress is proportional to strain (for small deformations):

o=Fe

or in a more familiar form which can be written as
F X A )
—_=FZ F=E=. F = kx (Hooke’s law)
A-°L L



Linear elastic response (most general description)

Let us consider a volume element like the one shown on the figure, subjected to
stress T with components shown on the figure.

T33
Surface forces are represented by the A
product of the stress components T,
i T, T,
and the areas on which they act X, = 431 23
T13 T
]‘12 T 22
The 9 stress components can be X2 21
written down as a tensor: X Tll )
1
T11 T12 T13
T=|T21 Toz T3
T31 T32 T33




Linear elastic response

If we require that the body is in static equilibrium, the stress tensor becomes
symmetric and can be simplified to:

T33
A
Ty Tz Tis) T /_—>T32 T
T=|T, Ty, T3 X3 =z 2] 7
T13 Tz Tzz) T13 T
22
1}
X T 7;1
11
Associated with the stress tensor is the ™! 1 :

corresponding strain tensor:

_511
S — 521
531

512
522
532

S13
523
533

ou;
where S;; ==— andu is the displacement field

Oxj

(u(x) tells how much the point at
coordinate x moved from the starting point)



Linear elastic response

The most general linear relation relating stress T to strain S is given by:
3~ 3

Tij = z z ®;jk1Sk1 where constants o, are the elastic moduli
k=11=1
This is the generalisation of the expression: 0 = ¢E

In principle, the values of the elastic moduli can vary from point to point within a
solid; we however allways assume that the material is homogeneous, so the
elastic moduli are independent of the coordinates

In other words, we assume that the entire object is made of the same material

There are in principle 3*= 81 distinct values of a; jx;Sk;, but as the stress and the

straintensors T and S are both symmetric, this reduces the number of
independent values to 36

Further reductions can be made depending on the crystalline structure of the
material, all the way to only 2 elastic constants for the case of isotropic materials

Typical isotropic materials are polycristalline materials such as poly Si, poly Si;N,
or amorphous materials (SiO,) — these are often used in NEMS/MEMS



Linear elastic response

The tensors T and S are symmetric, so instead of 3x3=9 independent values we
have 3+3=6 so it is easier to write the tensors as vectors with 6 components

The correspondence between the stress tensor and vector is this one:

T1 Te Ts
T=|Te T2 T4
Ts T4 T3

We can define an equivalent, simplified form for the strain tensor but with
unavoidable factors of 2 in some of the terms:

ou, ou, ous

€1=511=a_x1, 82:522:6__’)(:2, €3=533=a—x3
Ju ou Ju, du Ju, Jdu
€4=2523= 2+ 3) €5=2513= 1+ 3, €6=2512= 1+ 2

dx; 0xq

dx, 0xq



Linear elastic response

Written out in array format the strain tensor S looks like this:

&1 86/2 85/2
S=|&/2 & &,/2

&5/2 €4/2 &

Using these simplified definitions above, we can rewrite the elasticity relation

3 3
Tij = z Z aijlekl ina simplerform as T; = Z Cijgj [ = 1’ e, 6
k=11=1

j=1

This form allows for 6 x 6 = 36 independent elastic constants but many materials
can be described by significantly fewer constants

Constants ¢;; are called the elastic stiffness coefficients and have dimensions of N/m?



Linear elastic response

The simplest case is that of homogeneous, isotropic materials. They look the
same regardless of the orientation

This corresponds to neglecting all information on the spatial arrangement of the
atoms inside the material

The elastic moduli for these types of material have the form:

C11 C12 C1o O 0 0 7
C1 €11 €12 O 0 0
C C C 0 0 0
c= (1)2 (1)2 (1)1 Cow 00 where €44 = (€11 — €12)/2
0 0 0 0 c4sa O
0 0 0 0 0 cy4l

These constants are also referred to as the Lamé constants A and u and are defined
as:

A=C1p U=Caq =(C11—C12)/2

so there are only two independent elastic constants



Linear elastic response

The elastic properties of isotropic materials are most often reported in terms of the
Young's modulus E, Poisson ratio v and shear modulus G

These quantities are given in terms of the Lamé constants by the relations:

w31+ 2u) 1 A
E = , G=—, v=
A+ u u 2(1+ )

or in terms of the elastic moduli:

_ (c11 — ¢12)(€11 + 2¢43) c 1 C12

E
(c11 + ¢12) C12 C11 + C12



Elastic moduli of some materials

Young’s modulus Shear modulus Poisson’s ratio
E (GPa) G (GPa)

Aluminum
Brass
Steel
Silicon
SiO,
Si;N,

96-110
190-210
150
43-77
325

36-41
75-80
80

30
127

0.33
0.34
0.27-0.3
0.17
0.17
0.24
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