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Simplest MEMS/NEMS

▪ Mechanical element deforms under an electrostatic force

2

▪ The deformation of the mechanical element can usually be reduced to one of these 
types of deformation:

- stretching
- bending
- torsion



Examples of MEMS and NEMS devices



What are they for?

▪ Practical applications:
• force/acceleration/orientation sensing
• mass spectrometry on a chip – recognize atoms and molecules by weighing them
• replace quartz oscillators with MEMS/NEMS
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▪ Science:
• Casimir effect
• ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale

Nintendo Wii (2006)

iPhone gen 1 (2007)



RF resonator

Si beams with lengths of cca 7m, height h=0.8 m and width w=0.33 m

4Cleland et al., APL 69, 2653 (1996)



Fabrication sequence

1: Bare substrate

2: Photoresist coating 
and patterning

3: Metal deposition

4: Resist coating and 
patterning (for etch)

5: Etch of the structural 
layer, resist removal

6: Etch of the sacrificial 
layer
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RF resonator –  motion detection

Magnetomotive technique is the earliest method used for motion excitation and 
detection

6Cleland et al., APL 69, 2653 (1996)

▪ Device carrying rf current is placed in a 
magnetic field

Ԧ𝐹 = 𝐼ℓ × 𝐵

▪ The magnetic field induces rf Lorentz force

▪ Resulting displacement of the beam 
generates an electromotive force (voltage)

▪ This voltage is sensed, allowing the 
displacement to be measured

▪ Displacements are usually on the order of 
resonator widths



RF resonator –  motion detection

Magnetomotive technique

7Cleland et al., APL 69, 2653 (1996)



RF resonator –  motion detection

8Ekinci et al., APL 81, 2253 (2002)

▪ From the electrical point of view, NEMS are modelled as a parallel RLC network 
with total impedance 𝑍𝑚(𝜔) composed of resistance 𝑅𝑚, capacitance 𝐶𝑚 and 
inductance 𝐿𝑚

▪ The NEMS is coupled to the outside 
world through a resistance 𝑅𝑒. This 
represents the resistance of the leads

▪ NEMS is driven by a voltage source 
with an internal resistance 𝑅𝑠  and the 
voltage is measured on the load 𝑅𝐿. 

𝑅𝐿 = 𝑅𝑆 = 50 Ω

▪ For NEMS made of doped Si, 𝑅𝑚 < 100 Ω  
while 𝑅𝑒  is in the low kΩ range. Capacitive 
and inductive losses can be neglected in 
first approximation: 

𝑍𝑚 ≈ 𝑅𝑚



RF resonator –  motion detection

we get

9Ekinci et al., APL 81, 2253 (2002)

In this case, the voltage on the load can be approximated as:

𝑉0 𝜔 ≈ 𝑉𝑖𝑛 𝜔
𝑅𝑒 + 𝑍𝑚 𝜔

𝑅𝐿 + 𝑅𝑒 + 𝑍𝑚 𝜔

With the following numbers:

𝑉0 𝜔 ≈ 𝑉𝑖𝑛 𝜔 × 0.98

𝑅𝑒 = 2 𝑘Ω, 𝑅𝑚 = 100 Ω

𝑍𝑚 = 100 Ω, 𝑅𝐿 = 50 𝑘Ω



RF resonator –  motion detection

Sensitivity can be improved by using detection schemes that involve bridges

10Ekinci et al., APL 81, 2253 (2002)

single beam

bridge



Sensitive mass detection

SiC NEMS

11Ekinci et al., APL 84, 4469 (2004)

filament and 
shutter

quartz 
microbalance

apertures

NEMS



Sensitive mass detection

▪ Resonant frequency:

12Ekinci et al., APL 84, 4469 (2004)

𝜔2 =
𝑘

𝑚

▪ Mass detection:

2𝜔𝑑𝜔 = −
𝑘

𝑚2 𝑑𝑚 = −𝜔2
𝑑𝑚

𝑚

𝑑𝑚

𝑚
= 2

𝑑𝜔

𝜔

▪ Resolution: 2.5 ag = 2.5 × 10-18 g
 cca 7500 Au atoms
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This is what you need to get 6 Tesla

Superconducting magnet in the Kis group



Torsional oscillators with CNTs

▪ Idea – look for a physical property that changes with deformation
▪ Carbon nanotube – based torsional oscillator
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A. Hall, PhD thesis, Chappel Hill 2007
Papadakis et al., PRL 93, 146101 (2004)



Torsional oscillators with CNTs

▪ Carbon nanotube – based torsional oscillator

15

A. Hall, PhD thesis, Chappel Hill 2007
Papadakis et al., PRL 93, 146101 (2004)



Torsional oscillators with CNTs
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Nanotube chirality
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Nanotube chirality
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Kataura plot

Kataura et al, Synthetic Metals (1999)



Torsional oscillators with CNTs

Carbon nanotube – based torsional oscillator

19Hall et al., Nat Nano 2, 413 (2007)



Torsional oscillators with CNTs

Carbon nanotube – based torsional oscillator

20Hall et al., Nat Nano 2, 413 (2007)



Electrostatic actuation

▪ NEMS based on a carbon nanotube

21Sazonova et al., Nature 431, 284 (2004)

▪ where the gate voltage has both a static DC component and a small AC component 

(𝑉𝑔 = 𝑉𝑔
𝐷𝐶 + 𝑣𝑔

𝐴𝐶; 𝑣𝑔
𝐴𝐶 = 𝑉𝑔

𝐴𝐶cos(𝜔𝑡)) so that 𝑣𝑔
𝐴𝐶 2

 is negligibly small

𝐹𝑒𝑙 = −
𝑑𝐸

𝑑𝑧
= −

1

2

𝑑𝐶𝑔

𝑑𝑧
𝑉𝑔

2 = −
1

2

𝑑𝐶𝑔

𝑑𝑧
𝑉𝑔

𝐷𝐶 + 𝑣𝑔
𝐴𝐶 2

≈ −
1

2

𝑑𝐶𝑔

𝑑𝑧
𝑉𝑔

𝐷𝐶 𝑉𝑔
𝐷𝐶 + 2𝑣𝑔

𝐴𝐶

𝐸 =
𝐶𝑔𝑉𝑔

2

2

• CNT is suspended above a back-gate 
and is actuated electrostatically

• The energy stored in the capacitor with 
CNT as one and back gate as the other 
electrode is: 

• The electrostatic force is the gradient 
of the energy:



Motion detection

▪ The conductance change of such 
semiconducting nanotubes is 
proportional to the charge induced on 
the tube:

22Sazonova et al., Nature 431, 284 (2004)

𝛿𝑞 = 𝛿(𝐶𝑔𝑉𝑔) = 𝐶𝑔𝛿𝑉𝑔 + 𝑉𝑔𝛿𝐶𝑔

▪ The oscillating beam is a so-called 
small bandgap semiconducting carbon 
nanotube (𝐸𝑔 = 10 𝑚𝑒𝑉)

“normal” gating

≠ 0 for a moving nanotube



Motion detection

▪ Mixing technique, allowing use of low-bandwidth lock-in amplifiers

23

Sazonova et al., Nature 431, 284 (2004)
Sazonova, PhD thesis (2004), page 62

𝛿𝐼𝑙𝑜𝑐𝑘−𝑖𝑛 = 𝛿𝐺𝛿𝑉𝑠𝑑 =

=
1

2 2

𝑑𝐺

𝑑𝑉𝑔
𝛿𝑉𝑔 + 𝑉𝑔

𝐷𝐶
𝛿𝐶𝑔

𝐶𝑔
𝛿𝑉𝑠𝑑

sensitive to motion

Δ𝜔

Δ𝜔



Tunability

▪ Static voltage on the gate can induce tension in the suspended nanotube

24

▪ Changing the tension in the nanotube results in a shifting resonance frequency



Sensitive mass detection using nanotubes

25Chiu et al. Nano Lett. 8 4342 (2008)

Δ𝑓0

𝑓0
≈ −

𝑚

𝑚0
sin 𝜋𝑎/𝐿 sin 𝜋(𝐿 − 𝑎)/𝐿



Sensitive mass detection using CNTs

▪ Works at room temperature

26Jensen et al., Nature Nanotech. 3, 533 (2008)



Sensitive mass detection using CNTs

27Jensen et al., Nature Nanotech. 3, 533 (2008)



Sensitive mass detection using CNTs

28



Theoretical background: mechanics



Basic definitions (stress and strain)

▪ If the force acts at the center of the cross-section, the uniform stress 𝜎 will be 
given by:

29

▪ When we subject it to an axial force 𝐹, it 
will elongate by an amount 𝑥

▪ Hooke's law states that stress 𝜎 is proportional to strain 𝜀 (for small deformations):

or in a more familiar form which can be written as 

▪ If the bar is made of a homogeneous material, the axial strain 𝜀 will be:

▪ Let us consider a bar like the one on figure

(Hooke’s law)

𝜎 =
𝐹

𝐴
where A is the beam's cross-sectional area

𝜀 =
𝑥

𝐿

𝜎 = 𝐸𝜀

𝐹

𝐴
= 𝐸

𝑥

𝐿
→ 𝐹 = 𝐸

𝐴

𝐿
⋅ 𝑥 𝐹 = 𝑘𝑥



Hooke's law at the nanoscale

▪ Still holds – example of carbon nanotubes

30Yu et al., Science 287, 637 (2000)

𝐸Young =
1

𝑉0

𝜕2 𝐸

𝜕𝜀2



2D nanoribons @ LANES
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Types of mechanical response

▪ Materials can be classified according to the way they respond to stress as:
• elastic – strain is uniquely determined by the stress
• anelastic – stress has multiple values and hysteretic behavior

32

Stress-strain curve for an elastic material anelastic material

▪ Typical examples of anelastic materials: glass, rubber
▪ Their mechanical response is also time-dependent – the size of the hysteresis loop 

depends on the rate of strain

▪ Elastic materials fully recover their original shape and size when the strain is 
released

▪ Better choice for NEMS/MEMS: elastic



▪ Better choice for MEMS/NEMS: brittle

Types of mechanical response

▪ Elastic materials are further classified as elastic linear and elastic nonlinear, 
depending on whether the stress and strain are proportional to one another

▪ Another classification: ductile vs. brittle

33

▪ Ductile materials are elastic for small strains but can be deformed permanently 
with sufficiently high strain – typical examples are metals

Stress-strain curve for a ductile material

▪ Brittle materials have a linear elastic response up to the breaking point
Examples: usually covalently bonded materials such as Si, Ge, diamond



Basic definitions (stress and strain)

▪ If the force acts at the center of the cross-section, the uniform stresswill be 
given by:

34

▪ When we subject it to an axial force F, it 
will elongate by an amount x

▪ Hooke's law states that stress is proportional to strain (for small deformations):

or in a more familiar form which can be written as 

▪ If the bar is made of a homogeneous material, the axial strain will be:

▪ Let us consider a bar like the one on figure

(Hooke’s law)

𝜎 =
𝐹

𝐴
where A is the beam's cross-sectional area

𝜀 =
𝑥

𝐿

𝜎 = 𝐸𝜀

𝐹

𝐴
= 𝐸

𝑥

𝐿
→ 𝐹 = 𝐸

𝐴

𝐿
⋅ 𝑥 𝐹 = 𝑘𝑥



Linear elastic response (most general description)

▪ Let us consider a volume element like the one shown on the figure, subjected to 
stress 𝐓 with components shown on the figure. 
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▪ Surface forces are represented by the 
product of the stress components 
and the areas on which they act

▪ The 9 stress components can be 
written down as a tensor:

𝐓 =

𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33



Linear elastic response

▪ If we require that the body is in static equilibrium, the stress tensor becomes 
symmetric and can be simplified to:

36

𝐓 =

𝑇11 𝑇12 𝑇13

𝑇12 𝑇22 𝑇23

𝑇13 𝑇23 𝑇33

▪ Associated with the stress tensor is the 
corresponding strain tensor:

𝐒 =

𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

where 𝑆𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
and 𝑢 is the displacement field

(𝑢(𝑥) tells how much the point at 
coordinate 𝑥 moved from the starting point)



Linear elastic response

▪ The most general linear relation relating stress T to strain S is given by:

37

𝑇𝑖𝑗 = ෍

𝑘=1

3

෍

𝑙=1

3

𝛼𝑖𝑗𝑘𝑙𝑆𝑘𝑙 where constants  ijkl  are the elastic moduli 

▪ In principle, the values of the elastic moduli can vary from point to point within a 
solid; we however allways assume that the material is homogeneous, so the 
elastic moduli are independent of the coordinates

▪ In other words, we assume that the entire object is made of the same material

▪ There are in principle 34 = 81 distinct values of 𝛼𝑖𝑗𝑘𝑙𝑆𝑘𝑙 , but as the stress and the 
strain tensors 𝐓 and 𝐒 are both symmetric, this reduces the number of 
independent values to 36

▪ Further reductions can be made depending on the crystalline structure of the 
material, all the way to only 2 elastic constants for the case of isotropic materials

▪ Typical isotropic materials are polycristalline materials such as poly Si, poly Si3N4
or amorphous materials (SiO2) – these are often used in NEMS/MEMS

▪ This is the generalisation of the expression: 𝜎 = 𝜀𝐸



Linear elastic response

▪ The tensors 𝐓 and 𝐒 are symmetric, so instead of 3x3=9 independent values we 
have 3+3=6 so it is easier to write the tensors as vectors with 6 components

38

▪ The correspondence between the stress tensor and vector is this one: 

𝐓 =

𝜏1 𝜏6 𝜏5

𝜏6 𝜏2 𝜏4

𝜏5 𝜏4 𝜏3

▪ We can define an equivalent, simplified form for the strain tensor but with 
unavoidable factors of 2 in some of the terms:

𝜀1 = 𝑆11 =
𝜕𝑢1

𝜕𝑥1
, 𝜀2 = 𝑆22 =

𝜕𝑢2

𝜕𝑥2
, 𝜀3 = 𝑆33 =

𝜕𝑢3

𝜕𝑥3

𝜀4 = 2𝑆23 =
𝜕𝑢2

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥2
, 𝜀5 = 2𝑆13 =

𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
, 𝜀6 = 2𝑆12 =

𝜕𝑢1

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥1



Linear elastic response

▪ Written out in array format the strain tensor S looks like this:

39

Constants 𝑐𝑖𝑗 are called the elastic stiffness coefficients and have dimensions of N/m2

𝐒 =

𝜀1 𝜀6/2 𝜀5/2
𝜀6/2 𝜀2 𝜀4/2
𝜀5/2 𝜀4/2 𝜀3

▪ Using these simplified definitions above, we can rewrite the elasticity relation

𝑇𝑖𝑗 = ෍

𝑘=1

3

෍

𝑙=1

3

𝛼𝑖𝑗𝑘𝑙𝑆𝑘𝑙 in a simpler form as 𝜏𝑖 = ෍

𝑗=1

6

𝑐𝑖𝑗𝜀𝑗 𝑖 = 1, . . . , 6

▪ This form allows for 6 x 6 = 36 independent elastic constants but many materials 
can be described by significantly fewer constants



Linear elastic response

▪ The simplest case is that of homogeneous, isotropic materials. They look the 
same regardless of the orientation

40
so there are only two independent elastic constants

▪ This corresponds to neglecting all information on the spatial arrangement of the 
atoms inside the material

▪ The elastic moduli for these types of material have the form:

𝑐=

𝑐11 𝑐12 𝑐12 0 0 0
𝑐12 𝑐11 𝑐12 0 0 0
𝑐12 𝑐12 𝑐11 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0
0 0 0 0 0 𝑐44

where 𝑐44 = (𝑐11 − 𝑐12)/2

▪ These constants are also referred to as the Lamé constants 𝜆 and 𝜇 and are defined 
as:

𝜆 = 𝑐12, 𝜇 = 𝑐44 = (𝑐11 − 𝑐12)/2



Linear elastic response

▪ The elastic properties of isotropic materials are most often reported in terms of the 
Young's modulus E , Poisson ratio  and shear modulus G

41

or in terms of the elastic moduli:

▪ These quantities are given in terms of the Lamé constants by the relations:

𝐸 =
𝜇(3𝜆 + 2𝜇)

𝜆 + 𝜇
, 𝐺 =

1

𝜇
, 𝜈 =

𝜆

2(𝜆 + 𝜇)

𝐸 =
(𝑐11 − 𝑐12)(𝑐11 + 2𝑐12)

(𝑐11 + 𝑐12)
, 𝐺 =

1

𝑐12
, 𝜈 =

𝑐12

𝑐11 + 𝑐12



Elastic moduli of some materials

Material Young’s modulus 
E (GPa)

Shear modulus
G (GPa)

Poisson’s ratio


Aluminum 70 26 0.33

Brass 96-110 36-41 0.34

Steel 190-210 75-80 0.27-0.3

Silicon 150 80 0.17

SiO2 43-77 30 0.17

Si3N4 325 127 0.24
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